
CHAPTER

FOURTEEN

ADA

The United States Department of Defense (DoD) is a major consumer of soft-
ware. Like many computer users, the Defense Department is having a software
crisis. One trouble centers on the programming Babel|the department's sys-
tems are written in too many di�erent languages. This problem is particularly
acute for applications involving embedded systems|computers that are part of
larger, noncomputer systems, such as the computers in the navigation systems
of aircraft. Since timing and machine dependence are often critical in embed-
ded systems, programs for such systems are often baroque and idiosyncratic.
Concerned about the proliferation of assembly and programming languages in
embedded systems, the DoD decided in 1974 that it wanted all future programs
for these systems written in a single language. It began an e�ort to develop a
standard language.*

Typical embedded systems include several communicating computers. These
systems must provide real-time response; they need to react to events as they
are happening. It is inappropriate for an aircraft navigational system to deduce
how to avoid a mountain three minutes after the crash (in the unlikely event
that the on-board computers are still functioning three minutes after the crash).
A programming language for embedded systems must include mechanisms to
refer to the duration of an event and to interrupt the system if a response has
been delayed. Thus, primary requirements are facilities for exception handling,
multi- and distributed processing, and real-time control. Since the standard is

* Fisher [Fisher 78] and Carlson [Carlson 81] describe the history and motivation of that

project in greater detail.

201



202 languages

a programming language, the usual other slogans of modern software engineer-
ing apply. That is, the language must support the writing of programs that are
reliable, easily modi�ed, e�cient, machine-independent, and formally describ-
able. A request for proposals produced 15 preliminary language designs. The
Defense Department chose four of these for further development. After a two-
year competition, it selected a winner. This language was christened \Ada" in
honor of Ada Augusta, Countess of Lovelace, a co-worker of Babbage and the
�rst programmer.

Ada was created in the limelight. Many members of the academic and indus-
trial computer science community contributed advice and criticism to the devel-
opment process. The result is a language whose scope is ambitious. SIGPLAN
Notices served as a forum for much of the debate surrounding the speci�cation
and development process.

Ada is at the far language end of the language-model spectrum.* The entire
syntax and most of the formal semantics of Ada have been speci�ed [Donzeau-
Gouge 80]. The language is progressing towards standardization [DoD 80]. Its
conceptual basis and the foundation of its syntax are derived from Pascal, a
language renowned for its simplicity. However, the designers of Ada, in trying to
satisfy the numerous requirements of the Ada speci�cation, created an extensive
and complicated language.

This section describes the Ada facilities for distributed processing and com-
munication. We do not consider all the intricacies of Ada, since a complete
description of Ada would itself �ll a book.y Jean Ichbiah led the group at CII-
Honeywell-Bull that designed Ada. Several Ada compilers have been completed
and the DoD has great expectations for Ada's eventual widespread application.
For those who wonder about the e�ect of U.S. military support on the popu-
larity of a programming language, the last language promoted by the Defense
Department was Cobol.

Entry, Access, and Rendezvous

Explicit processes and synchronized communication are the basis for concurrency
in Ada. In many ways, Ada builds on concepts from Distributed Processes. Ada
borrows Distributed Processes's remote procedure call and extends it in three
important ways. (1) The entry procedures of Distributed Processes become ob-
jects (entries) with properties such as size and order, accessible from many places

* We characterize models as being a simple description of distributed computing, unadorned

by syntax, and languages as embedding (and perhaps obscuring) their ideas for distribution in

the practical aspects of programming. By that metric, Ada is at the far, far language-end of

the language-model spectrum.
y Many books devoted to describing Ada have already been published. One such book is

Pyle's The Ada Programming Language [Pyle 81]. Similarly, a \self-assessment procedure" in

the Communications of the ACM was devoted to a tutorial on the nonconcurrent aspects of

Ada [Wegner 81].



ada 203

within a single process. (2) Called processes are not passive|they schedule the
order in which they serve their entries. (3) Though calling processes are, by and
large, passive, they can abort calls if they do not receive a quick enough response.

Ada is a complete programming language. Its designers intended to provide
the programmer with a useful set of facilities (such as process communication,
queueing, and abstract data types) while still permitting manipulation of the
system primitives (such as interrupt locations, processing failures, and queue
sizes). The overall e�ect is a language that is frightening in complexity but
impressive in scope.

Processes in Ada are called tasks. Tasks have local storage and local proce-
dures. Ada tasks are objects. The programmer can declare a single instance of
a particular task or describe a task type, generating instances of that type much
as one would create new instances of a Pascal record. Our �rst few examples
deal with individual declarations of tasks. If a subprogram declares three tasks,
then the tasks are created when that subprogram is entered. When created, a
task commences processing. Tasks can terminate in several di�erent ways, such
as reaching the end of their program, being explicitly stopped, or by causing a
run-time error. Ada also has a mechanism for synchronizing the termination of a
collection of tasks. We discuss synchronized task termination at the end of this
chapter.

Ada permits arbitrary nesting of program descriptions. A task can declare
other tasks, which in turn can declare still other tasks. Additionally, Ada pro-
cedures can be recursive. Thus, a recursive Ada procedure that declares a new
task creates a new instance of that task for each recursive call. Tasks can also be
created by explicit execution of the task-creation command. Thus, Ada has both
explicit process creation and process creation through lexical elaboration. A task
that creates other tasks is the parent of these tasks; these tasks are dependent
on the parent and are siblings. Thus, if task P creates tasks Q and R, P is the
parent of Q and R while Q and R are siblings.

One of Ada's design goals is encapsulation|hiding the implementation of a
subsystem while exhibiting (to other program segments) the subsystem interface.
This intention is realized by breaking the description of a task into two parts,
a speci�cation and a body. The speci�cation is visible to the other program
components. That is, at compilation other components can use the information
in the speci�cation. The speci�cation describes the names and formats of the
interfaces to this task from other tasks. The body contains the task's variable
declarations and code. It is hidden from other tasks and subprograms. That
is, other program segments cannot reference the internal structure and state
described in a task body. The separation of a task into speci�cation and body
syntactically enforces intermodule security and protection.

Communication requires syntactic connection|names for mutual reference.
We create a communication channel to a task by declaring an entry in the task's
speci�cation. Syntactically, other tasks treat that entry as a procedure. Within
the called task the entry represents a queue of requests. A statement of the form



204 languages

accept <entry name> <formal parameter list>; is a directive to retrieve the next
call from an entry's queue and to process it with the code that follows. The
structure of the information exchange is similar to a procedure call: there are
named and typed �elds for information 
ow both into and out of the task.*

Our �rst example is a task, line block, that assembles lines of 120 characters
and forwards them for printing. A line is

type line is array (1 .. 120) of character;

When a line is full, line block passes it to the printer task. The speci�cation part
of line block de�nes its name and declares a communication channel, entry add.
The parameters in this declaration de�ne the shape of communications to this
channel, not particular identi�ers for actual processing.

task line block is

entry add (c: in character);

end line block;

To place the character \d" in the line being assembled, another task would
execute the command

line block.add (\d");

The declaration of an entry creates a queue and calls on that entry are placed
in that queue. But for an exception discussed below, a task that calls an entry
blocks until that call is handled.

Line block invokes accept on an entry to get the next item in a queue.
The accept call supplies a formal parameter list. Thus, in the module (hidden,
invisible) body of line block, a statement of the form

accept add (c: in character);

takes the next item from entry add and assigns the value of the calling argument
to variable c. The scope of this variable is the accept statement (discussed below).
The completion of the accept unblocks the calling task; it resumes processing. If
there are no calls waiting in the entry queue, then the accept statement blocks
until one arrives. Variable c is an in parameter because it channels information
into the task.

Line block �rst accumulates a line of 120 characters. It then requests that
the line be printed by calling entry writeit in task printer. It repeats this process
for successive lines. The task body of line block is as follows:

* Unfortunately, the Ada documentation is deliberately ambiguous about the semantics of

parameter passing. Evidently, particular Ada implementations can use either call-by-value-

result or, when feasible, call-by-reference for intertask communication.



ada 205

task body line block is

thisline : line;

i : integer;

begin

loop

for i in 1 .. 120 loop

accept add (c: in character) do - - The scope of c is the accept
statement.

thisline (i) := c; - - In Ada, semicolons are statement
terminators, not separators.

end add; - - Block structure is usually indicated by \<keyword>
: : : end <identi�er>" pairs, instead of \begin : : :

end" pairs. We usually pick this identi�er to be the
keyword that began the block or, for accept
statements, the name of the accept entry.

end loop;

printer.writeit (thisline);

end loop;

end line block;

Ada provides out parameters for communicating responses back to a calling
task. To illustrate out parameters, we extend line block to respond to charac-
ter insertions with a count of the character positions remaining on the line. This
requires two modi�cations to line block. The �rst is to include an out (result) pa-
rameter in entry add. This changes both the speci�cation part of the task and the
accept statement. The second is to add a critical region after the accept state-
ment. During this critical region, the calling and called task are synchronized
and the called task computes its response. The calling task blocks until after the
critical region. Syntactically, the critical region is the sequence do <statements>

end; following the accept. The called process returns the value of the out pa-
rameter at the end of the critical region. The time between the execution of the
accept and the end of the accept statement is called a rendezvous between the
calling and the called tasks.

task line block is

entry add (c: in character; left: out integer);

end line block;

task body line block is

thisline : line;

i : integer;

begin

loop

for i in 1 .. 120 loop



206 languages

accept add (c: in character; j: out integer) do - - rendezvous
j := 120 � i; - - the critical region

end add; - - end of rendezvous
thisline (i) := c;

end loop;

printer.writeit (thisline);

end loop;

end line block;

Indeterminacy Timing, delays, and time-outs are important for real-time sys-
tems. Languages for embedded systems need mechanisms to deal with time. In
Ada, a process can execute a delay command to suspend processing for a speci�ed
interval. For example, if the value of current is �ve, executing the statement

delay 2*current;

causes this task to pause for ten seconds. As we shall see, delay is also an integral
part of the Ada communication mechanism.

CSP uses guarded commands to select a process that is ready to communi-
cate from among several possible communicators. Ada's select statement general-
izes CSP's guarded input command, allowing other alternatives besides blocking
until communication. Select takes a sequence of select alternatives, separated by
the delimiter or. Each alternative is an accept alternative, a delay alternative,
or a terminate alternative. Accept alternatives attempt to read a value from an
entry. Delay and terminate alternatives are used when the system cannot imme-
diately accept an input. A delay alternative sets an alarm clock. If the alarm goes
o� before an acceptable request arrives, the task executes the code of the delay
alternative instead of accepting. If an acceptable request arrives �rst, the alarm
is disabled and the request accepted. Terminate alternatives are used to bring a
set of tasks to simultaneous conclusion. We discuss terminate alternatives below.
Both accept and delay alternatives can be followed by a series of statements to
be executed when that alternative is selected.

Like guarded commands, select alternatives can be conditional on a boolean
expression. An alternative of the form when b => accept e can be selected only
if boolean condition b is true. A select alternative is open when it has either no
guard or a true guard.

In line block, we might prefer to separate the mechanisms for adding a char-
acter to the output line and returning a count of the available character positions.
This requires that line block have two entries, an add entry to add a character
and a free entry to request the free space count.

task line block is

entry add (c: in character);

entry free (left: out integer);

end line block;



ada 207

task body line block is

thisline : line;

i : integer;

begin

loop

i := 1;

while i < 121 loop

select

accept add (c: in character) do

- - Selection of this alternative �rst executes
the accept statement and then increments
the counter.

thisline (i) := c;

end add;

i := i + 1;

or

accept free (j: out integer) do

j := 120 � i;

end free;

end select;

end loop;

printer.writeit (thisline);

end loop;

end line block;

Sometimes we prefer that a task not block if there are no pending requests.
An else alternative provides this possibility. Syntactically, an else alternative
substitutes else for the select statement's last or and follows the else with a
series of statements. Semantically, a select statement with an else alternative
that cannot immediately accept an entry request executes the statements of the
else alternative instead.

Ada has several syntactic restrictions on the arrangement of select alterna-
tives. Every select statement must have at least one accept alternative. If it has
a terminate alternative, it cannot have a delay alternative; if it has a terminate
alternative or a delay alternative, it cannot have an else alternative.

The syntax of the select statement allows the expression of a variety of
control structures. Therefore, the algorithm followed in evaluating a select state-
ment is somewhat complex. Its theme is to select an immediately available,
open accept alternative. If no such alternative exists, then the arrangement
of waiting, delay, termination, and else alternatives determines the task's be-
havior. More particularly, evaluation of a select statement proceeds as follows:
(1) The task checks the guard of each alternative and discovers the open alter-
natives. Each open alternative is an accept, delay, or terminate alternative. (2) It
determines to which entry each open accept alternative refers. (As we discuss



208 languages

below, entries can be subscripted. Determining the referent entry is equivalent
to computing the entry subscript.) We call entries with open accept alterna-
tives and waiting requests in the entry queue the acceptable entries. (3) The
task determines how long a delay each delay alternative speci�es. (4) If there
are any acceptable entries, the task executes the action associated with one of
them (selecting one arbitrarily). That is, the �rst choice of a select statement
is always to immediately accept an entry call. (5) If there are no acceptable
requests waiting, then we might want to wait for one, wait for one but give
up after a while, execute some alternative action, or check if it is time to co-
ordinate the termination of a set of tasks. (6) If the select statement has no
delay alternatives, no terminate alternative, and no else alternative, then the
task waits until a request appears in an acceptable entry queue. This is typical
behavior for a passive, \server" task. (7) If the select statement has an else
alternative, the process executes that alternative immediately. (8) If the select
statement has a delay alternative, the task blocks. It unblocks after the shortest
delay. It then executes the statement associated with that delay. If an accept-
able request appears before the delay has elapsed, the task executes an accept
alternative that refers to that request instead. (9) If the select statement has
a terminate alternative, then the terminate alternative may be executed under
certain circumstances.

Of course, there may be no open alternatives. In that case, if the select
statement has an else alternative, it evaluates that alternative. A select statement
with neither open alternatives nor an else alternative has reached an error. It
raises the select error exception. Figure 14-1 graphs the decision 
ow of the
select statement.

In our next example, we vary line block to illustrate the select statement. We
assume that line block no longer forces lines out to the printer, but waits for the
printer to ask for them. (Thus, line block becomes a producer-consumer bu�er.)
Furthermore, if the internal bu�ers are full, a line is ready for the printer, and
the printer fails to request that line within 5 minutes (300 seconds), line block

calls the routine printer trouble. We provide line block with two bu�ers, one for
�lling with incoming characters and another to hold a line ready to be sent to
the printer. The task has variables that record the state of these bu�ers: nextfree,
the next free character position in the �lling bu�er; and print ready, a boolean
that is true when the printing bu�er is ready to be written.

task line block is

entry add (c: in character);

entry please print (ln: out line);

end line block;

task body line block is

printer trouble time : constant integer := 300;

print line, �ll line : line; - - a bu�er for the printer and a bu�er for
�lling



ada 209

nextfree : integer;

print ready : boolean; - - Is the printing line ready to output?
begin

nextfree := 1;

print ready := false;

loop

select

when (nextfree < 121) => - - space for another character
accept add (c: in character) do

�ll line (nextfree) := c;

end add;

nextfree := nextfree + 1;

if (nextfree = 121) and not print ready then

print ready := true;

nextfree := 1;

print line := �ll line;

end if;

- - By subscripting our two
bu�ers, we could have
avoided this copying.

or

when print ready => - - full bu�er ready for the printer
accept please print (ln: out line) do

ln := print line;

end please print;

if nextfree = 121 then

print line := �ll line;

nextfree := 1;

else

print ready := false;

end if;

or

when print ready and (nextfree > 120) =>
delay printer trouble time;

printer trouble;

end select;

- - waiting for the printer for over �ve
minutes

end loop;

end line block;

Ada programs can reference attributes of certain objects. An attribute of an
object is non-value information about that object. For example, one attribute
of an entry is the size of its queue. Syntactically, an attribute of an object is
the name of the object, an apostrophe, and the attribute name. For example,
the attribute add0count is the size of the add entry queue; line block0terminated

is true when task line block has terminated.

Ada entries can be subscripted, producing a family of entries. If line block

is a bu�er for 20 tasks, each with its own printer, then line block would declare



210 languages

Figure 14-1 Selection statement operation.

a family of entries for each character producer and each printer. We must suc-
cessively poll the entries to �nd one with a waiting request. (This contrasts with
CSP, where we can check an entire family of processes in a single guarded input
command.)

task line block is

entry add (1..20) (c: in character); - - a family of entries
entry please print (1..20) (ln: out line);

end line block;



ada 211

task body line block is

bu�ers : array (1..20) of line; - - no double bu�ering this time
bufnext : array (1..20) of integer;- - pointer into each bu�er
thisone : integer; - - entry currently under consideration

begin

for thisone in 1..20 - - initialize the bu�ers
loop

bufnext (thisone) := 1;

end loop;

thisone := 1;

loop - - This loop polls each entry pair to see if that producer/printer
pair is ready to interact. If nothing is waiting in the appropriate
entry, we select the else alternative and proceed to poll the next
pair.

select

when bufnext (thisone) < 121 => - - space for another
character in this bu�er

accept add (thisone) (c: in character) do

bu�ers (thisone) (bufnext (thisone)) := c;

end add;

bufnext (thisone) := bufnext (thisone) + 1;

or

when bufnext (thisone) > 120 => - - full bu�er ready for the
printer

accept please print (thisone) (ln: out line) do

ln := bu�ers (thisone);

end please print;

bufnext (thisone) := 1;

else

null; - - If neither is ready, go on to next member of the family.
end select;

thisone := thisone + 1;

if thisone > 20 then thisone := 1; end if;

end loop;

end line block;

We could specify 20 printers to handle the 20 calls with

task printer (1..20) is

end printer;

The printers are numbered from 1 to 20. Within its task body, a printer can
reference its own number as the attribute printer0index.



212 languages

Task types Tasks can be types, just as records, arrays, and enumerations are
types. We can have both statically allocated tasks (such as arrays of tasks) and
dynamically created tasks. Processes execute the command new to dynamically
create new instances of a task type. Of course, one needs pointers to dynamically
created objects. Ada calls such pointers access types.

We illustrate task types with a program for the dining philosophers problem.
The dining philosophers program has three varieties of tasks: philosophers, forks,
and the room. Philosophers call the room to enter and exit, and call the forks to
pick them up and put them down. Philosophers cycle through thinking, entering
the room, picking up the forks, eating, putting down the forks, and leaving the
room. To declare a new type, task type fork, we state

task type fork is

entry pickup;

entry putdown;

end task;

A pointer to a fork is an afork.

type afork is access fork;

Philosophers are also a task type. In our example, we create them dynamically
and then send them pointers to each of their forks.

task type philosopher is

entry initiate (left, right: in afork); - - This is a template for the structure
of the initiate entry, not a
declaration of left and right.

end task;

We give ourselves a �xed, initial room.

task room is

entry enter;

entry exit;

end task;

The task bodies of the processes are as follows:

task body room is

occupancy: integer;

begin

occupancy := 0;

loop

select

when (occupancy < 4) =>



ada 213

accept enter;

occupancy := occupancy + 1;

or

accept exit;

occupancy := occupancy � 1;

end select;

end loop;

end task;

task body fork is

begin

loop

accept pickup;

accept putdown;

end loop;

end task;

New does not provide creation parameters for the newly generated object, so
we call the initiate entry in the new philosopher to send it the names of its forks.
Since the entry parameters (leftparm and rightparm) last only through the scope
of the accept statement, we need permanent variables left and right to remember
the names of the forks.

task body philosopher is

left, right: afork;

begin

accept initiate (leftparm, rightparm: in afork) do

left := leftparm;

right := rightparm;

end;

loop

- - think;
room.enter;

left.pickup;

right.pickup;

- - eat;
left.putdown;

right.putdown;

room.exit;

end loop;

end task;

The entire program is as follows:

procedure dining ps is pragma main; - - In Ada, the \pragma" (compiler
advice) \main" asserts that this is
the main program.



214 languages

task room is : : : ;

task body room is : : : ;

task type fork is : : : ;

task body fork is : : : ;

type afork is : : : ;

task type philosopher is : : : ;

task body philosopher is : : : ;

philos : array (0..4) of philosopher; - - declarations of global storage
i : integer;

theforks : array (0..4) of afork;

begin

for i in 0..4 loop

theforks (i) := new fork;

end loop;

for i in 0..4 loop - - Send each philosopher its forks.
philos (i).initiate (theforks (i), theforks ((i + 1) mod 5));

end loop;

end dining ps;

This solution avoids both deadlock and starvation. The room's occupancy limit
(four philosophers) prevents deadlock and the fork entry queues prevent starva-
tion.

Selective entry call In Ada, an accepting task has some control over ordering
the processing of calls to its entries. It can select the next entry for processing,
choose the �rst arrival from among several entries, abort a potential rendezvous if
a time constraint is exceeded, and even use the size of its entry queues in deciding
what to do. Calling tasks do not have an equivalent variety of mechanisms to
control communication. However, Ada does provide calling processes with a way
of aborting calls that \take too long." This mechanism is the select/entry call.
A select/entry call takes one of two forms|either a conditional entry call or a
timed entry call. The form of a conditional entry call is

select

<entry call> (<parameters>); s1; s2; : : : ;

else

s01; s
0

2; : : : ;

end select;

A timed entry call is similar

select

<entry call> (<parameters>); s1; s2; : : : ;



ada 215

or

delay <time-expression>; s01; s
0

2; : : : ;

end select;

In a conditional entry call, a rendezvous takes place if the called task is waiting for
a request on this entry. After the rendezvous, the calling task executes statements
s1; s2; : : : . If the called task is not waiting for a request on this entry, the calling
task executes the else statements s01; s

0

2; : : : . In either case, this task does not
block for long; it either communicates immediately or does not communicate at
all. The timed entry call is similar, except that the call aborts if the rendezvous
does not begin before the end of the indicated delay. If the delay is exceeded,
the call is abandoned and the task executes statements s01; s

0

2; : : : .

Unlike the multiple arms of the select/accept statement, a calling task can
o�er to communicate with only a single other task in any select/entry call. This
avoids the potential di�culty of matching several possible communicators. A
task executing a conditional entry call o�ers the called task an opportunity
for rendezvous. Either the called task accepts immediately or the calling task
withdraws the o�er. This organization allows a simple protocol in which only
two messages need be sent to accept or reject a rendezvous o�er.

The timed entry call is somewhat more complex; its semantics is complicated
by the issue of whose clock (which task) is timing the delay. Bernstein discusses
the more elaborate protocols involved in many-to-many communication matching
in his paper on output guards in CSP [Bernstein 80]. He argues that matching
many-to-many requests requires complicated or inherently unfair protocols. Since
even the timed entry call allows only many-to-one o�ers, it is simpler to program
the protocols of Ada than of CSP output guards.

Since requests can be withdrawn from an entry queue, programmers cannot
(in general) treat a nonzero count as assuring the existence of a call. That is, the
statement

if thisentry0count > 0 then

accept thisentry : : :

end if;

can block if the request to thisentry is withdrawn between the test of the if

statement and the accept.

Ada treats interrupts as hardware-generated entry calls. It provides repre-
sentation speci�cations, a mechanism for tying speci�c interrupts to particular
entries. A task can disable an interrupt by ignoring requests on that interrupt's
entry.

The elevator controller Ada was designed for programming embedded sys-
tems. As an example of an embedded system, we present a decentralized elevator
control system. This system schedules the movements of several elevators. Due



216 languages

not so much to the wisdom of building decentralized elevator controllers as much
as to our desire to illustrate distributed control, many components in this system
are processes. More speci�cally, a task controls each elevator and a task controls
each button (up and down) on each 
oor. An elevator task controls moving an
elevator up and down, opening and closing its doors, and stopping at 
oors.
Each 
oor button task waits for its button to be pressed, then signals the next
approaching elevator to stop. Figure 14-2 shows the communication structure of
the elevator system.

procedure elevator controller is

pragma main

begin

basement : constant integer := 0; - - elevators for a building of
penthouse : constant integer := 40; - - 40 stories
num elevators : constant integer := 8; - - There are eight elevators.

oor wait : constant integer := 15; - - Elevators stop at a 
oor for

(at least) 15 seconds.

- - The motor procedure accepts commands of the form \up," \down," and
\stop." A direction (the ways an elevator can move) is a subtype of a
motor command, either \up" or \down." A 
oor is an integer from
basement (0) through penthouse (40).

type motor command is (up, down, stop);

subtype direction is motor command range up .. down;

type 
oor is range basement .. penthouse;

A 
oor button task has four entries. The press entry is for the line from the
real (physical) button. Each time the real 
oor is pressed, a call is added to this
entry's queue. When an elevator approaches a 
oor from a particular direction,
it calls that 
oor's button for that direction on the coming entry. That is, an
upward moving elevator arriving at a 
oor calls that 
oor's up button task. This
call is a select/entry call. If the button is waiting on coming (someone has pressed
it and no other elevator has promised to come) then the tasks rendezvous. The
elevator detects the rendezvous and knows that it is sought. (The elevator also
stops at 
oors requested by its internal buttons, the car buttons.) When an ele-
vator arrives at a 
oor it announces its arrival with a call to the here entry. The
button also has an interested entry for communicating with idle elevators (de-
scribed below). Floor buttons never initiate communication. Instead, they wait
for elevators to call them. Additionally, all communication is between anony-
mous elevators and 
oor buttons. No elevator ever communicates directly with
another elevator and no 
oor button knows which elevator will serve it.

Sometimes elevators �nd themselves with no pressing demands. An elevator
with none of its car buttons on dreams|that is, it surveys 
oors until it �nds



ada 217

Figure 14-2 The elevator system.

one that needs its services. This survey is done without actually moving the
elevator. To distinguish between elevators that are actually going to a 
oor and
the ones that are just considering going, elevators conduct this survey on the
interested entry. A 
oor with waiting passengers responds to a single interested

call. However, if another elevator indicates that it can get to that 
oor �rst
by signaling the 
oor on the coming line, the 
oor accepts the o�er. Thus, an
interested connection is a promise by an elevator to go to a 
oor but entails no
commitment by that 
oor to save its passengers for the elevator.

task type button is

entry press;

entry coming;

entry interested;

entry here;

end task;

task body button is

press on, coming on, interested on: boolean;



218 languages

- - When an elevator arrives at a 
oor, the button on that 
oor calls the
\arrived" procedure. This procedure clears the button's press queue and
delays the departure of the elevator until at least one second after the
last press. Thus, a passenger can keep an elevator at a 
oor by holding
down the button on that 
oor.

procedure arrived is

begin

delay 
oor wait;

loop

select

accept press;

delay 1; - - time for another press
else

exit - - exit the loop
end select;

end loop;

press on := false;

coming on := false;

interested on := false;

end arrived;

begin - - the main procedure of task button
loop

select

accept here do - - always respond to arrivals
arrived;

end here;

or

when not press on =>
accept press; - - Check if the button has been pressed.
press on := true;

or

when press on and not coming on =>
accept coming;

coming on := true;

- - Accept the �rst \coming" if the
button has been pushed.

or

when press on and not coming on

and not interested on =>
accept interested;

interested on := true;

- - Accept at most one expression of
interest, and only if no elevator has
promised to come.

end select;

end loop;

end button;



ada 219

- - This statement generates 2�(penthouse�basement+1) buttons and sets
them running. (In practice, we might omit the \down" button for the
basement and the \up" button for the penthouse.)

buttons: array (
oor, direction) of button;

Each elevator controller is a task with two entries. The �rst is for requests
from its own internal 
oor selection buttons, the car buttons. The second is
from the 
oormark reader. When the elevator is moving, the 
oormark reader

interrupts as each 
oor approaches, signaling the 
oor's number. This signal
allows enough time to decide whether to stop the elevator at that 
oor.

task type controller is

entry car buttons (f: in 
oor);

entry 
oormark reader (f: in 
oor);

end task;

The controller procedures motor and door move cause the starting and stop-
ping of the elevator and the opening and closing of the elevator doors. The motor
procedure takes the commands up, down, and stop; the door procedure takes open
and close. The machine hardware ensures that the motor never drives the eleva-
tor through the foundation or roof. Stop stops the elevator at the next 
oor. We
ignore the internal structures of these procedures, other than the minor caveats
implied in their comments.

task body controller is

type doormove is (open, close);

- - Motor returns from a stop call when the 
oor is reached and the
elevator has stopped. Motor returns from an up or down immediately.
procedure motor (which way: in direction) is

...

- - This procedure opens and shuts the doors.
procedure doors (how: in doormove) is

...

The elevator's permanent state is stored in three variables. The current 
oor

is the elevator's current 
oor. The current direction is the elevator's current (or
intended) direction. The array goingto (a two-dimensional, boolean array, in-
dexed by 
oors and directions) is the elevator's set of intended visits. A h
oor,
directioni entry is set in goingto when the elevator promises to visit that 
oor
with a coming call or when an elevator passenger requests that 
oor. Variables
found and where are temporaries.



220 languages

type setting is array (
oor, direction) of boolean;

goingto : setting;

current 
oor : 
oor;

current direction : direction;

where : 
oor;

found : boolean;

Three simple auxiliary functions on 
oors and directions are step, limit, and
opp direction. Function step takes a 
oor and a direction, and returns the next

oor in that direction. Thus, a step(up) from 
oor 5 is 
oor 6. A step(down) from

oor 5 is 
oor 4. The limit of a direction is the farthest 
oor in that direction.
For example, limit(down) = basement. Function opp direction reverses directions.
The opp direction(up) = down. For the sake of brevity, we omit the code for these
functions.

Initializing the elevator controller consists of moving it to the basement and
setting the elements in its goingto array to false.

procedure initialize (aset: in out setting;

cur 
oor: out 
oor;

cur dir: out direction) is

f : 
oor;

dir : direction;

begin

doors (close);

motor (down);

loop

select

accept 
oormark reader (
r: in 
oor) do

f := 
r;

end 
oormark reader;

exit when f = basement;

or

delay 60;

exit;

- - If no new 
oor mark has shown up in the last
minute, we must be at the bottom.

end select;

end loop;

for f in basement .. penthouse

loop

for dir in up .. down

loop

aset (f, dir) := false;

end loop;

end loop;



ada 221

cur 
oor := basement;

cur dir := up;

end initialize;

Procedure check carbuttons reads the 
oors requested from entry car buttons

and sets the appropriate values in array goingto.

procedure check carbuttons (cur 
oor: in 
oor;

goingto: in out setting) is

begin

cbs: loop

select

accept car buttons (f: in 
oor) do

if f > cur 
oor then

goingto (f, up) := true;

else

if f < cur 
oor then

goingto (f, down) := true;

end if;

end car buttons;

else

exit cbs; - - We can exit a labeled loop.
end select;

end loop;

end check carbuttons;

An elevator calls procedure arrive at 
oor when it reaches a 
oor. The eleva-
tor does not leave until the 
oor button returns from the call to here. Since the

oor button empties its press entry queue during the here rendezvous, one can
keep an elevator at a 
oor by repeatedly pressing the call button on that 
oor.

procedure arrive at 
oor (cur 
oor: in 
oor; cur dir: in direction) is

begin

doors (open);

buttons (cur 
oor, cur dir).here;

goingto (cur 
oor, cur dir) := false;

doors (close);

end arrive at 
oor;

Function further this way is true when an element of goingto, \further along
in this direction," is set. Additionally, further this way enforces promises found

by dreaming (see below) by ensuring that the elevator goes at least as far as the
get to 
oor.

function further this way (cur: in 
oor;



222 languages

dir: in direction;

get to: in 
oor) returns boolean is

answer : boolean;

f : 
oor;

begin

answer := false;

if not (cur = limit(dir)) then

f := step(cur, dir);

loop

answer:= goingto(f, dir) or (get to = f);

exit when answer or (f = limit(dir));

f := step(f, dir);

end loop;

return answer;

end if;

end further this way;

The system workhorse is function move til stop. It takes the elevator as far
as needed in a given direction, calling the procedures that run the motor and
open and close the doors.

function move til stop (dir: in direction; get to: in 
oor) returns 
oor is

cur: 
oor;

begin

motor (dir); - - An elevator continues until told to stop.
mainloop: loop

accept 
oormark (f: in 
oor) do

cur := f;

end 
oormark;

select - - entry call select
buttons (cur, dir).coming;

goingto (cur, dir) := true;

else - - attempt only an immediate rendezvous
null;

end select;

check carbuttons (cur, goingto);

if goingto (cur, dir) then

motor (stop);

arrive at 
oor (cur, dir);

exit mainloop

when not further this way (cur, dir, get to);

motor (dir);

end if;

end loop;



ada 223

return cur;

end move til stop;

A di�cult part of elevator control is deciding what to do when an elevator
does not have a currently pending request, such as a pressed car button. When
that happens, our elevators dream|pretend to move up and down the building,
looking for a 
oor that is interested in having an elevator visit. A 
oor that
accepts an interested call is promised that this elevator will move to that 
oor.
However, the 
oor can still respond to a coming call from another elevator if the
other elevator gets there �rst.

procedure dream (start, stop, real
oor: in 
oor;

dir: in direction;

answer: out boolean;

�nds: out 
oor) is

begin

check carbuttons (real
oor, goingto);

answer := false;

�nds := start;

loop

select

buttons (�nds, dir).interested;

answer := true;

else

answer := goingto (�nds, dir);

end select;

if �nds = stop or answer then

exit;

end if;

�nds := step (�nds, dir);

end loop;

end dream;

- - - - - - - - - - - - - - - - - - - - - main program - - - - - - - - - - - - - - - - - - -
begin

initialize (goingto, current 
oor, current direction);

- - First dream of going in the current direction until the limit (basement
or penthouse) of that direction, then in the opposite direction down from
that limit to the other limit, and so forth, until a real request appears.
Then satisfy requests until at a limit. Then go back to dreaming of work.
loop

dream (current 
oor, limit (current direction), current 
oor,

current direction, found, where);



224 languages

if found then

current 
oor := move til stop (current direction, where);

else

dream (limit (current direction), current 
oor, current 
oor,

opp direction (current direction), found, where);

if found then

current 
oor := move til stop (current direction, where);

else

current direction := opp direction (current direction);

end if;

end if;

end loop;

end controller;

- - Create a controller for each elevator.
vators: array (1 .. num elevators) of controller;

end elevator controller;

In this example, we periodically call procedure check carbuttons to examine
the elevator's internal buttons. This could be a task running concurrently with
the main program. Ideally, such a task would share the array goingto with the
controller. In Ada, one can share storage between tasks|tasks created in the
same scope share variables declared in that scope and higher scopes. Exercise 14-7
asks that the elevator controller be modi�ed to have a process that checks car-
buttons execute in parallel with the process that controls elevator movement.

Pragmatics

Packages Several of Ada's features are of particular pragmatic interest. The
�rst is the inclusion in the language of packages, a form of abstract data type
facility. The second is the ability to declare generic program objects. Generic
objects re
ect Alan Perlis's maxim that \one man's constant is another man's
variable" [Perlis 82]. They allow the type information in Pascal-like languages to
be instantiated to di�erent values. For example, Pascal requires separate sorting
routines to sort integers, reals, and so forth. In Ada, one could build a generic
sorting routine and instantiate that routine to particular data types.

Priorities A task may be given an integer-valued priority. A task of higher
priority has greater urgency. Thus, a disk-controller task would typically have
a higher priority than a terminal-controller task. In a task speci�cation, the
pragma

pragma priority <compile-time integer expression>



ada 225

associates a priority with a task. The Ada standard states the intended e�ects
of a priority as [DoD 80, p. 9-13]:

If two tasks with di�erent priorities are both eligible for execution and could sensibly be

executed using the same processing resources then it cannot be the case that the task

with the lower priority is executing while the task with the higher priority is not.

The standard goes on to warn [DoD 80, p. 9-13]:

The priority of a task is static and therefore �xed. Priorities should be used only to indicate

relative degrees of urgency; they should not be used for task synchronization.

Attribute taskname0priority gives the priority of task taskname.

Dynamic exception handling In Ada, certain run-time incidents are excep-
tions. Ada subprograms can have a section of code reserved to deal with each
particular variety of exception. A program segment that runs when an exception
happens is an exception handler. Typical exceptions include numeric exceptions,
raised on conditions such as under
ow and over
ow; select exceptions, raised
when a select statement without an else alternative has no open alternatives;
and tasking exceptions, raised when intertask communication fails. Program-
mers can declare their own exceptions. The command raise <exception-name>

raises an exception, forcing control to that exception's handler. If an exception
occurs and the program segment has no exception handler, the exception propa-
gates back through the run-time calling structure of the task until a handler for
it is found. If an exception propagates to the outermost level of a task without
�nding an exception handler, the task terminates.

Termination An Ada task terminates when it has reached the end of its code
and all its dependent tasks have terminated. This is normal termination. Se-
lection of a terminate alternative in a select/access statement also causes nor-
mal termination (see below). Execution of an abort statement causes abnormal
termination. Any task may abort any task; a task is not limited to aborting
only itself or its dependent tasks. Abnormal termination of a task causes ab-
normal termination of its dependent tasks. Thus, if a system of tasks is 
oun-
dering, the entire system can be terminated by aborting the parent task. The
attribute taskname0terminated is true if task taskname has terminated; the at-
tribute taskname0completed is true if task taskname is waiting for the termination
of its dependent tasks before terminating.

A task that terminates while waiting in an entry queue is deleted from that
queue. If rendezvous is in progress when a calling task terminates, the called
task completes the rendezvous normally. If a task calls an entry in a task that
has terminated, the tasking error exception is raised in the calling task. The
termination of the called task during rendezvous also raises the tasking error

exception in the calling task.



226 languages

The terminate alternative of the select/accept statement is designed to co-
ordinate the termination of a set of tasks. The idea is that a task may wish to
terminate when it is no longer possible for it to receive any further entry calls.
This can be the case only if its parent and all its sibling and dependent tasks are
either terminated or in this same \potentially dying" state. Algorithmically, we
imagine a task that is active as 
ying a white 
ag. When a task terminates, it
lowers the white 
ag and raises a black one. A task waiting in a select statement
with an open terminate alternative 
ies a gray 
ag. If and only if all other tasks
that can call the gray-
ag task have dark (gray or black) 
ags does this task
terminate (changing gray to black). If a task 
ying a gray 
ag receives a call to
one of its entries, it changes its 
ag to white and continues processing. A mostly
dark landscape is not an assurance that termination is near|one white 
ag can
eventually cause a sea of gray 
ags all to turn white. To simplify determining
which tasks can still potentially receive communications, creating tasks with the
new statement precludes using a terminate alternative.

Perspective

Ada is an imperative, explicit process language that provides synchronized com-
munication. Communication is a form of remote procedure call. However, unlike
procedure calls, the called process keeps multiple entries and the calling process
can abort the communication for inadequate service.

Ada is an attempt to deal with the issues of real multiple-processor, dis-
tributed computing systems. The facilities for synchronization provided by ren-
dezvous, multiple entries, and the temporal constructs provide Ada great opera-
tional power. Ada provides a well-developed set of mechanisms for dealing with
temporal relationships, such as elapsed time and time-outs. This variety of mech-
anisms is not surprising; concepts such as delay and time-out are important for
manipulating objects in the real world. By and large, other languages omit these
functions because they complicate the language semantics. Explicit time (much
like multiple processes) introduces an element of indeterminacy into a program-
ming system. For most programming tasks this indeterminacy is a hindrance to
the writing of correct programs.

Ada has been criticized for the asymmetry of its communication relation-
ships. Calling and called tasks are not equal, though it is not clear where the
balance of power lies. A calling task knows with which task it is communicating.
However, it can only select its communicators serially, with little more control
over the occasion of communication than time delay.* Called tasks can schedule
their work with much greater 
exibility, choosing indeterminately as requests
arrive. However, calls to a task are anonymous. This ignores a potential form of
interprocess security.

* Even this power, embodied in the select/entry call, was a late addition to Ada|it is not

in the preliminary manual [SIGPLAN 79], only the later standard [DoD 80].



ada 227

In providing mechanisms for handling process and communication fail-
ure, Ada moves beyond the simpler proposals. In so doing, it has limited
the distributed aspects of the language. The visibility of attributes such as
task0terminated and the presence of terminate alternatives in select statements
does not mean that an Ada program cannot be implemented on a distributed
system; only that there is more underlying sharing of information than may be
apparent at �rst glance.

Ada tries to deal with the pragmatic issues in programming. On the other
hand, it tries to be all encompassing, to provide a mechanism for every even-
tuality. This produces a language that is not only powerful but also complex.
Ada has been criticized for this complexity (for example, by Hoare in his Tur-
ing Award lecture [Hoare 81]). But Ada is also to be praised for its scope and
depth. Its future is di�cult to predict: It has the potential to soar on the power
of its mechanisms, or to become mired in a morass of syntactic and semantic
complexity.

PROBLEMS

14-1 Imagine an alarm clock process in an Ada system that can keep time (and, of course,

use all the other process communication mechanisms). Can this process be used to replace the

delay alternative in the select statement?

14-2 Kieburtz and Silberschatz [Kieburtz 79] cite the example of a \continuous display"

system of two processes, one that calculates the current position of an object (the update

process) and the other that (repeatedly) displays the object's location on a screen (the display

process). The two processes run asynchronously; typically, the update process is faster than

the display process. The goal of the system is to display the latest position of the object;

when update calculates a new value for the position of the object, the old ones become useless.

However, the display process should never be kept waiting for an update. Thus, the information

from update should not be treated by display with the usual �rst-in-�rst-out (queue) discipline.

Instead, it is the most recently received value that is needed. Old values are useless and should

be discarded.

This idea of display/update interaction is isomorphic to an organization that shares stor-

age between the two processes. Of course, shared storage is easy to arrange in Ada. This

question requests a program for the continuous display problem that does not rely on shared

storage.

14-3 To what extent can the e�ect of select/accept be achieved by checking the size of the

entry queue with the count attribute? What are the pitfalls of this approach?

14-4 Contrast the select/accept and select/entry call mechanisms with Exchange Functions

(Chapter 7) and CSP's guarded input and output commands (Chapter 10).

14-5 Procedure check carbuttons sets an element in goingto for 
oors f less than or

greater than the current 
oor. It does not set an element when f equals cur 
oor. Why?

14-6 Modify the elevator controller program to turn on and o� the lights on the up and

down buttons on each 
oor.

14-7 Program an \elevator button checking task" that runs concurrently with the elevator

control and communicates with it by sharing the array goingto.

14-8 Can a passenger on 
oor 2 be ignored by elevators that are kept busy between 
oors

5 and 8? (Clossman)

14-9 What happens when two elevators arrive at a 
oor at the same time?



228 languages

14-10 Improve the program of the elevator controller to run the elevators more e�ciently. For

example, have a 
oor serviced by another elevator send a cancellation message to an interested

elevator.

14-11 Devise an algorithm that mimics the e�ect of terminate alternatives without using

terminate alternatives.

REFERENCES

[Bernstein 80] Bernstein, A. J., \Output Guards and Nondeterminism in `Communicating

Sequential Processes,' " ACM Trans. Program. Lang. Syst., vol. 2, no. 2 (April 1980),

pp. 234{238. This paper discusses the protocol di�culties in dealing with processes that

can issue guarded input and output commands. Ada sidesteps much of this problem by

allowing only a single destination for a select/entry call.

[Carlson 81] Carlson, W. E., \Ada: A Promising Beginning," Comput., vol. 14, no. 6 (June

1981), pp. 13{15. Carlson's paper is a brief history of the Ada development e�ort. He

combines this history with predictions about Ada's future.

[DoD 80] Department of Defense, \Military Standard Ada Programming Language," Report

MIL-STD-1815, Naval Publications and Forms Center, Philadelphia, Pennsylvania (De-

cember 1980). This is the current Ada standard. This document will be replaced by future

standards as Ada evolves. The standard is about 200 detailed pages long. This is a good

measure of Ada's complexity.

[Donzeau-Gouge 80] Donzeau-Gouge, V., G. Kahn, and B. Lang, \Formal De�nition of

the Ada Programming Language: Preliminary Version for Public Review," unnumbered

technical report, INRIA (November 1980). This paper is a formal de�nition of all aspects of

Ada except tasking. The paper presents two kinds of semantics for Ada, \static semantics"

and \dynamic semantics." The static semantics performs type checking and the like.

The dynamic semantics expresses the run-time semantics of programs in an \applicative

subset" of Ada.

[Fisher 78] Fisher, D. A., \DoD's Common Programming Language E�ort," Comput., vol. 11,

no. 3 (March 1978), pp. 24{33. This article relates the motivations for and historical

development of Ada.

[Hoare 81] Hoare, C.A.R., \The Emperor's Old Clothes," CACM, vol. 24, no. 2 (March

1981), pp. 75{83. This paper was Hoare's Turing Award lecture. In this paper he warns

about the pitfalls of programming languages that are too complicated.

[Kieburtz 79] Kieburtz, R. B., and A. Silberschatz, \Comments on `Communicating Se-

quential Processes,' " ACM Trans. Program. Lang. Syst., vol. 1, no. 2 (January 1979),

pp. 218{225. Kieburtz and Silberschatz's paper is the source of the \continuous display"

problem.

[Perlis 82] Perlis, A. J., \Epigrams on Programming," SIGPLAN Not., vol. 17, no. 9 (Septem-

ber 1982), pp. 7{13. Perlis presents a satirical collection of programming wisdom.

[Pyle 81] Pyle, I. C., The Ada Programming Language, Prentice-Hall International, Engle-

wood Cli�s, New Jersey (1981). This book is a good introduction to the complexities of

Ada for the experienced programmer. It is both concise and comprehensive. Particularly

useful are appendices on Ada for programmers familiar with Fortran or Pascal.

[SIGPLAN 79] SIGPLAN Notices, \Ada Manual and Rationale," SIGPLAN Not., vol. 14,

no. 6 (June 1979). This is the original report from the Honeywell Ada group on their

language. This report was published as a two volume issue of SIGPLAN Notices and is

widely available. The current Ada manual [DoD 80] supersedes it as the Ada standard.

SIGPLAN Notices published much of the discussion and many of the proposals that led

to Ada. ACM now has a technical group, ADATEC (a \junior" special interest group)

devoted to Ada.



ada 229

[Wegner 81] Wegner, P., \Self-Assessment Procedure VIII," CACM, vol. 24, no. 10 (October

1981), pp. 647{677. This paper presents a self-assessment procedure on Ada. Because

of Ada's novelty, Wegner attempts not only to test, but also to teach the language. He

concentrates on the abstraction aspects of Ada, such as modules, types, and packages. He

completely excludes discussion of concurrency in Ada.


